অনির্ভরশীল (Independent) ও নির্ভরশীল (Dependent) ঘটনার জন্য সম্ভাবনার গুণনসূত্র (Multiplication Rule for Independent and Dependent Events) সম্ভাবনা তত্ত্বের একটি গুরুত্বপূর্ণ অংশ। এটি আমাদের বুঝতে সাহায্য করে কীভাবে দুটি বা তার বেশি ঘটনা একে অপরের উপর নির্ভরশীল বা নির্ভরশীল না হয়ে ঘটতে পারে এবং সেক্ষেত্রে তাদের সম্মিলিত সম্ভাবনা কিভাবে নির্ণয় করা হয়।
যখন দুটি ঘটনা একে অপরের উপর কোনো প্রভাব ফেলছে না এবং একটির সংঘটিত হওয়া অন্যটির সংঘটিত হওয়ার সম্ভাবনার উপর কোনো প্রভাব সৃষ্টি করে না, তখন ওই ঘটনাগুলো অনির্ভরশীল (Independent) ঘটনা বলে পরিচিত।
অনির্ভরশীল ঘটনাগুলোর সম্মিলিত সম্ভাবনা বের করতে গুণ নিয়ম (Multiplication Rule) ব্যবহার করা হয়। এই নিয়ম অনুযায়ী, দুটি অনির্ভরশীল ঘটনার সম্মিলিত সম্ভাবনা হবে:
\[
P(A \cap B) = P(A) \times P(B)
\]
এখানে:
ধরা যাক, একটি কয়েন দুই বার ফেলা হচ্ছে। প্রতিবারের উল্টো পিঠ (Heads) আসার সম্ভাবনা \( \frac{1}{2} \)। এখানে, প্রথম ফ্লিপের ফলাফল দ্বিতীয় ফ্লিপের ফলাফলের উপর কোনো প্রভাব ফেলছে না, তাই এই দুই ঘটনা একে অপরের উপর নির্ভরশীল নয়, অর্থাৎ তারা অনির্ভরশীল।
তাহলে, প্রথম এবং দ্বিতীয় ফ্লিপে উল্টো পিঠ আসার সম্মিলিত সম্ভাবনা হবে:
\[
P(\text{Heads on 1st and 2nd flip}) = P(\text{Heads on 1st flip}) \times P(\text{Heads on 2nd flip}) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}
\]
যখন দুটি ঘটনা একে অপরের উপর নির্ভরশীল হয়, অর্থাৎ একটি ঘটনার ফলাফল অন্যটির সম্ভাবনাকে প্রভাবিত করে, তখন এই ধরনের ঘটনা নির্ভরশীল (Dependent) ঘটনা বলে পরিচিত।
নির্ভরশীল ঘটনাগুলোর সম্মিলিত সম্ভাবনা বের করতে গুণ নিয়ম (Multiplication Rule) ব্যবহার করা হয়, তবে এখানে একটি অতিরিক্ত পদ থাকে। নির্ভরশীল ঘটনাগুলোর জন্য গুণনসূত্র হবে:
\[
P(A \cap B) = P(A) \times P(B \mid A)
\]
এখানে:
ধরা যাক, একটি ব্যাগে ৫টি লাল বল এবং ৪টি নীল বল আছে। প্রথমে একটি বল টানা হচ্ছে, এবং তারপর সেটি ব্যাগে ফেরত না দিয়ে দ্বিতীয় বল টানা হচ্ছে। এখানে, দ্বিতীয় টানাটি প্রথম টানার ফলাফলের উপর নির্ভরশীল, কারণ প্রথম টানার ফলে ব্যাগে বলের সংখ্যা পরিবর্তিত হবে।
ধরা যাক, প্রথম টানায় একটি লাল বল (ঘটনা \(A\)) টানা হচ্ছে। এরপর, দ্বিতীয় টানায় আবার একটি লাল বল (ঘটনা \(B\)) টানার সম্ভাবনা বের করতে হবে।
প্রথম টানায় লাল বল টানার সম্ভাবনা:
\[
P(A) = \frac{5}{9}
\]
এরপর, দ্বিতীয় টানায় লাল বল টানার শর্তাধীন সম্ভাবনা হবে:
\[
P(B \mid A) = \frac{4}{8} = \frac{1}{2}
\]
তাহলে, প্রথম এবং দ্বিতীয় টানায় লাল বল টানার সম্মিলিত সম্ভাবনা হবে:
\[
P(A \cap B) = P(A) \times P(B \mid A) = \frac{5}{9} \times \frac{1}{2} = \frac{5}{18}
\]
\[
P(A \cap B) = P(A) \times P(B)
\]
\[
P(A \cap B) = P(A) \times P(B \mid A)
\]
এই গুণনসূত্রগুলো সাহায্য করে আমরা একাধিক ঘটনা একসাথে ঘটার সম্ভাবনা নির্ণয় করতে, যদি ঘটনার মধ্যে নির্ভরশীলতা থাকে বা না থাকে।
আরও দেখুন...